An Answer That Even An Single Cell Organism Can Understand

By Agustin M Rela
Translated by Fabian Schonholz

I hired Ramiro Rela back in late 2002 or early 2003. The reality is that I did not want to hire him because he did not have the relevant experience I was looking for. I would have had to contend with mutiny had I not hired him. Allowing my other employees to convince me was one of the best decisions I ever made. Ramiro is a scholar and a gentleman, a friend, a fantastic co-worker (when we did work together) and a very intelligent individual with whom I enjoyed pizza, beer or wine and some deep intellectual and technical conversations.

With the CERN turning on the LHC and the rumors around the event – whether a black hole can be produced by it or not – Ramiro asked his father, who is a physicist, to explain what a particle accelerator was and how it worked, all in terms a “single cell” organism would understand. Now … the single cell organisms are the people at the office who were “aptly” concerned about black holes generated by a particle accelerator … and influenced by the WWW’s rumor mill.

I have translated Ramiro’s father’s explanation because I think it is brilliant and it MUST be shared. It explains in very clear terms not only what an accelerator is but some basic quantum physics concepts needed to understand how and why accelerators are built. I have included the original text in Spanish for those who would rather read the original and save themselves from my horrible and butchered translation. Besides, if you can read it in Spanish, even better, since Agustin writes beautifully.

Here it goes …

Dear Ramiro:

Physics studies everything the hard way. It is one of its curses.

In 1916 Max Plank and others discovered Quantum Physics, which establishes that objects with definite contours do not exist and that matter is only diffused energy waves. To make matters worse, these waves can only manifest in packets called “quantum” and as whole packets. This discovery changed the philosophy of Physics, since it wiped the borderline between object and subject and the principle of causality and set a numeric limit to the knowledge of reality.

Mass is equivalent to energy through Einstein’s E = mc2. And the energy of a quantum (of which you can calculate its mass) is E = hf. Where ‘h’ is Plank’s constant and f the frequency measured in hertz – or cycles per second.

On the other hand, in order to see an object you need to use waves smaller than the object. That is why a virus can not be seen with an optical microscope, since the smallest light wave we can see is of 1/1000th of a millimeter and viruses are 100 times smaller. In order to observe them we need to use shorter length waves provided by electrons – let’s remember that electrons are themselves waves. A more familiar example is waves in the ocean of 2 or 3 meters long. They go around the dock posts like they were not there but bounce back once they hit a boat. However, the waves generated by a fisherman’s floater reflect perfectly off the same dock posts.

A high frequency means a short wave length, as we realize that mice squeak but do not roar. And as Planck’s formula tells us the higher the frequency the greater the energy associated to a particle. It is an injustice that in order to see a small particle we need to violently shake it with great energy while to see an elephant a faint sound wave is sufficient.

Historically, large molecules could be seen without instrumentation. Atoms could only be seen if you bombarded them with particles emitted from radioactive sources. Atom’s nuclei can be seen by using a cyclotron, a machine in whose interior electrons gyrate thanks to synchronized attractions and repulsions. With such machine we can obtain high energy electrons, thus, high frequency and short wavelength. As a consequence, these electrons are apt for bouncing against smaller elements than an atom, e.i.: its nucleus.

To see what’s inside a nucleus higher energy particles are needed, in other words, faster particles. Particles are accelerated by attracting and rejecting them with correctly polarized electricity. The largest accelerators are big vacuumed tunnels so accelerated particles would not collide with anything; and they are attracted and repelled by rings of changing polarity. It is as though a horse was running along the tunnel being offered a carrot at one moment and spanked immediately after. Each trainer ought to rapidly change his attraction strategy for a repulsion as soon as the irrational goes by their noses. Such is what the electric poles do in the accelerator.

The famous LHC or Great Hadron Collider is today the largest in the world. It differentiates from the previous in that it can accelerate particles until they have enough energy to see what is inside a particle that belongs to an atom’s nucleus It accumulates up to 5 trillion electron volts per particle. A Hadron is a type of subatomic particle composed of quarks and characterized by strong nuclear interactions; i.e.: protons and mesons. Hadron means “heavy” in Greek.

There is no risk that these experiments may destroy the world. Moreover, the world is constantly being bombarded by cosmic rays with an energy of ten to the twentieth electron volts while the LHC does not even reach ten to the thirteenth of the same units. It was built because there is not time to wait for just the required cosmic ray in the required place needed for an experiment.

Some people call the LHC “The God Machine” since it produces and is used to produce particles that where abundant during the beginning of the universe. The religious tradition associates the beginning of the universe with Creation.

Objections are heard that a large quantity of resources have been invested in basic or pure science with no immediate concrete application. But that always happens. When the first experiments with nuclear energy were conducted, nobody knew that France and Japan were going to obtain today most of the electricity they consume from nuclear energy; nobody knew that cancer was going to be cured with radio-isotopes; or sterilized surgical instrumentation with atomic radiation. And when Isaac Newton imagined in 1684 the placement of an artificial satellite on an orbit around Earth, he set in play the wildest and freest scientific imagination, that today, make it possible for people to be evacuated hours before a hurricane hits; or airplanes to save a third of their gas thanks to weather forecasting; or make it possible for me to receive your questions and for you to receive my answers.


AgustIn M Rela

—- Spanish Version —-

Querido Ramiro:

La física estudia todo a los golpes; ésa es una de sus maldiciones.

En 1916 Max Plank y otros descubrieron la física cuántica, que establece que los objetos de contornos definidos no existen, y sólo hay ondas difusas de materia. Para colmo, esas ondas sólo se pueden manifestar en paquetes llamados cuantos, y no en fracciones. Ese descubrimiento cambió la filosofía, porque barrió la frontera entre objeto y sujeto y el principio de causalidad, y puso límite numérico al conocimiento que se puede tener de la realidad.

La masa es equivalente a la energía a través de la famosa fórmula de Einstein, E=m.c². Y la energía de un cuanto (de la que se puede calcular la masa) vale E = h.f, donde h es la constante de Plank, y f la frecuencia de la onda, en hertz, o ciclos por segundo.

Por otra parte, para ver un objeto hay que usar ondas más chicas que el objeto, por eso no se puede ver un virus con un microscopio óptico, dado que la onda de luz más chica que podemos ver es de media milésima de milímetro, y el virus es centenares de veces más chico. Para observarlo hay que usar ondas más cortas, provistas por electrones. (Recordemos que los electrones son ondas, igual que cualquier otra cosa.) Un ejemplo más familiar es que las olas del mar, de dos o tres metros de longitud, pasan alrededor de los postes del muelle como si no existieran, pero rebotan en un barco más grande. En cambio las olas pequeñas que hace el corcho del pescador se reflejan perfectamente en los mismos postes.

Una frecuencia alta significa una longitud de onda corta, como nos damos cuenta al comprobar que los ratones chillan, pero no rugen. Y como la fórmula de Planck dice que cuanto mayor es la frecuencia, tanto más grande es la energía asociada a una partícula, resulta la injusticia de que para ver cosas muy chicas hay que sacudirlas a lo bruto con gran energía; en cambio para ver un elefante alcanza con muy débiles ondas de sonido.

En la historia, las moléculas grandes se vieron casi a simple vista. Para ver átomos hubo que bombardearlos con partículas emitidas por fuentes radiactivas. Para ver los núcleos de los átomos hubo que usar un ciclotrón, que es una máquina en cuyo interior giran electrones gracias a repulsiones y atracciones sincronizadas. Con esa máquina se obtienen electrones de mucha energía, por tanto, de alta frecuencia; y por eso, de escasa longitud de onda, y en consecuencia aptos para rebotar en cosas más chicas de un átomo; por ejemplo, su núcleo.

Para ver lo que hay dentro del núcleo hacen falta partículas de más energía, o sea más veloces. Se las lleva a gran velocidad atrayéndolas y rechazándolas con electricidad de la polaridad correcta. Los aceleradores más grandes son túneles en los que se hace el vacío para que las partículas no choquen con nada, y se las atrae y repele con anillos de polaridad cambiante. Es como si por el túnel corriera un caballo y le ofrecieran zanahorias por delante, y lo castigaran a patadas por atrás un momento después. Cada entrenador debería cambiar rápidamente su estrategia de atracción por una de repulsión, apenas pase el irracional frente a sus narices. Eso hacen los polos eléctricos del acelerador.

El famoso LHC, o Gran Colisionador de Hadrones, hoy el más grande del mundo, se distingue de los anteriores en que puede acelerar partículas hasta que tengan la energía suficiente como para ver qué  hay dentro de las partículas que forman parte de los núcleos. Acumula hasta 5 billones de electrón voltios por cada partícula. (Algunas fuentes dicen trillones, por error de traducción.) Un hadrón es un tipo de partículas subatómicas compuestas por quarks y caracterizadas por una interacción nuclear de la llamada fuerte; por ejemplo el protón y el mesón. Hadro significa pesado en griego.

No hay riesgo de que esos experimentos destruyan el mundo, porque de hecho todos los días nos bombardean rayos cósmicos de diez a la veinte electrón voltios, mientras que el Gran Chocador no llega a diez a la trece de las mismas unidades. Se lo construyó porque no hay tiempo para esperar que justo aparezca un rayo cósmico en el lugar requerido por un experimento.

Algunos llaman al LHC la Máquina de Dios, porque las partículas que estudia fueron las más abundantes en los comienzos del universo, y la tradición religiosa asocia ese origen con la Creación.

Se oyen objeciones a que se haya invertido una cantidad muy grande de recursos en ciencia básica o pura, o sea sin aplicación concreta a la vista. Pero eso pasa siempre. Cuando se experimentó con la energía nuclear por primera vez, no se sabía que Francia y Japón iban a obtener hoy de ella casi toda la energía eléctrica que consumen; que se iba a curar el cáncer con radioisótopos, o a esterilizar instrumental quirúrgico con radiaciones atómicas. Y cuando Isaac Newton imaginó en 1684 la colocación de un satélite artificial en órbita, puso en juego la más pura imaginación científica libre y desenfrenada, sin sospechar que hoy los satélites hacen que se pueda
evacuar a tiempo una región amenazada por un huracán; ahorran hasta un tercio del combustible de aviación gracias al pronóstico meteorológico, y permiten que me lleguen tus preguntas, y que tellegue esta respuesta.

Un abrazo,

AgustIn M Rela


Filed under Interesting, Technology

7 responses to “An Answer That Even An Single Cell Organism Can Understand

  1. Would it be possible if I link to this website, from my blog? I’m wanting to discover as many sources of relevant information as I am able.

  2. Hello,this is Clark Balmaceda,just identified your Blog on google and i must say this blog is great.may I share some of the information found in your weblog to my local buddies?i am not sure and what you think?in any case,Many thanks!

  3. Pingback: Blog de RedPanal

  4. Many thanks for the great posting. I am glad I have taken the time to see this.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s